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Reversible adaptive regularization:
perturbed Kepler motion and
classical atomic trajectories

By Benedict Leimkuhler
Department of Mathematics, 405 Snow Hall, University of Kansas,

Lawrence, KS 66045, USA (leimkuhl@math.ukans.edu)

Reversible and adaptive integration methods based on Kustaanheimo–Stiefel regu-
larization and modified Sundman transformations are applied to simulate general
perturbed Kepler motion and to compute classical trajectories of atomic systems
(e.g. Rydberg atoms). The new family of reversible adaptive regularization methods
also conserves angular momentum and exhibits superior energy conservation and
numerical stability in long-time integrations. The schemes are appropriate for scat-
tering, for astronomical calculations of escape time and long-term stability, and for
classical and semiclassical studies of atomic dynamics. The components of an algo-
rithm for trajectory calculations are described. Numerical experiments illustrate the
effectiveness of the reversible approach.

Keywords: time-reversible variable step sizes;
Hamiltonian systems; N-body problems

1. Introduction

This paper describes the design of efficient time-reversible regularized adaptive meth-
ods for long-term integration of coulombic few-body problems. The stable compu-
tation of trajectories is important for astronomical applications (Heggie 1988; Lecar
1968; Aarseth 1985) and in the classical and semiclassical studies of atomic systems,
particularly atoms in highly excited (‘Rydberg atom’) states (Gu & Yuan 1993;
Richter & Wintgen 1990; Ezra et al. 1991; Noid et al. 1986; Lee et al. 1997; Main &
Wunner 1997; Gutzwiller 1990; Richter et al. 1993). Calculations of relevant stochas-
tic quantities (average escape time, orbital dimension, etc.) may require long-time
integrations. Using traditional methods, very small time-steps or non-physical cor-
rective measures—such as rescaling of velocities—are sometimes needed to maintain
roughly constant energy throughout a long simulation.

While the preservation of symplectic structure is known to lead to improved con-
servation of energy in long-term simulations (Sanz-Serna & Calvo 1994; Hairer 1994;
Benettin & Giorgilli 1994; Hairer & Lubich 1999), we show that, at least in two-
body scattering, discrete conservation of the symmetry and time-reversal symmetry
implies an orbital axial symmetry which again confers superior energy conservation.
Although this result is restricted to the two-body case, our numerical experiments
suggest that the property is potent enough to facilitate stable long-term integration
of perturbed Kepler motion and atomic few-body problems when a splitting tech-
nique is used to isolate the strong two-body contributions of the motion. Our method
also conserves angular momentum.
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1102 B. Leimkuhler

Although some of the observations of this paper would be applicable to other types
of systems, we will focus on N -body problems with a Hamiltonian

H =
N∑
i=1

|pi|2
2mi

− V (q).

Here V (q) is a potential energy function that is assumed to decompose into coulombic
two-body interactions:

V (q) =
N−1∑
i=1

N∑
j=i+1

αij
rij

.

For gravitation, all of the coefficients αij are negative, whereas for atomic problems,
both signs occur. To simplify the presentation, we will typically assume unit masses
and that the constants αij are ±1.

For atomic problems, the nuclei may often be assumed fixed in space to a first
approximation, resulting in a reduced Hamiltonian for the electron motion.

The two types of coulombic problems are similar in that there are always some
negative force coefficients αij . This makes possible arbitrarily close approaches of two
bodies (‘collisions’) that are ruled out in other N -body systems such as molecular
dynamics (due to Pauli repulsion). Gravitation and classical atomic dynamics differ
in that three-body collisions, although rare in gravitation (Siegel & Moser 1971), are
rarer still in atomic systems. For example, the only way to have a three-body collision
in helium is along a zero-angular momentum orbit when the two electrons approach
the nucleus from either side. This article focuses on the treatment of perturbed Kepler
motion and atomic problems, i.e. problems without close three-body approaches.

Time transformations alone can be used as smoothing transformations for two-
body collisions (Huang & Leimkuhler 1997; Hut et al. 1995); however, much better
results are obtained when they are combined with various types of coordinate trans-
formations (Kustaanheimo–Stiefel (KS) transformation, semiparabolic coordinates,
etc.). These have the effect of reducing the pure Kepler problem to a linear system.
When the KS transformation is used to generate a time-stepping method in the con-
text of perturbations, the key problem turns out to be the efficient resolution of the
time variable. We take up these issues in § 4. One component of our overall method is
a regularizing energy-conserving symplectic Kepler solver that is more efficient than
a standard quadrature.

Even with regularization, time transformations per se are still very important for
two reasons: (1) we find that despite the use of a regularizing transformation, the
sensitivity of the Keplerian motion to distant perturbing forces increases substan-
tially during a collision; and (2) they are needed for treating the still quite strong
forces, such as electron–electron interactions, which are not regularized by the KS
transformation. Our method therefore also includes the use of an outer modified
Sundman transformation incorporating these effects. A third use for the Sundman
transformation is to automatically reduce the step size during very large motions
such as those that occur during ionization in an external field.

The glue that binds all these techniques together is the fully explicit adaptive
Verlet method (Holder et al. 1998), which allows us to incorporate the Sundman
transformation in such a way that the overall time-stepping strategy preserves the
time-reversal symmetry of the true flow. Although symplecticness is then sacrificed,
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Reversible adaptive regularization 1103

our experiments (see also Hut et al. 1995; Funato et al. 1996) show that this conserva-
tion is adequate to recover long-term behaviour reminiscent of symplectic methods.
While experiments in Barth et al. (1999) with Lennard–Jones spheres suggested the
possibility of instability in explicit variants of the adaptive Verlet method, we do
not observe any such problems in the current application provided the control is
properly chosen, probably because the adaptive Verlet scheme is only being used
to control time-step with respect to (relatively) soft forces, after the collisions have
been ameliorated by regularization.

A recent paper appearing in the astrophysics literature (Funato et al. 1996) de-
scribes a method for combining the KS transformation with time-reversible step-size
variation for treating perturbed Kepler motion. This study did not consider multiple-
body problems and it uses the implicit step-size variation technique of Hut et al.
(1995) instead of an explicit scheme such as that described here; for this reason,
we believe that our method will prove to be substantially more efficient in highly
collisional problems. For three-body gravitation, an alternative symplectic approach
to regularization has recently been suggested by Mikkola (1997).

The layout of the paper is as follows. In § 2, we discuss the energy error when a
simple scattering problem is solved with various numerical methods, and point out
that even the short-term dynamics of a collisional problem benefit from a symplec-
tic scheme. In § 3, we demonstrate with a numerical experiment that time-reversible
schemes applied to the time-transformed equations of motion also give excellent
energy conservation, and we introduce the adaptive Verlet method. Section 4 dis-
cusses regularizing transformations and the fast Kepler solver. Section 5 discusses
and compares several methods for treating perturbed Kepler problems. Section 6
describes the treatment of atomic systems based on splitting, the fast Kepler solver
and the adaptive Verlet method. Section 7 revisits a scattering study that recently
appeared in the physical literature; by using the new reversible adaptive regulariza-
tion method, finer structure may be obtained in the regime of chaotic scattering.

All of the numerical experiments of §§ 5–7 were performed using the code scat,
a C-language program available from the author for simulating perturbed Kepler
motion and classical atomic trajectories. A companion article (Leimkuhler 1998)
discusses the extension of the reversible adaptive regularization method for applied
electrical and magnetic fields.

2. Background: symplectic methods in numerical scattering

In this section, we discuss the behaviour of various types of numerical integration
methods when applied to a simple scattering problem, the Kepler problem with a
Hamiltonian in polar coordinates given by

H = 1
2p2 − 1

q
+

l2

2q2 , (2.1)

where l = pθ is the angular momentum. The observations of this section generally
apply to other collisional problems, such as the Kepler problem solved in Cartesian
coordinates, or problems with purely repulsive potentials such as the Lennard–Jones
molecular potential.

We integrate a fairly low-energy open orbit (l = 0.5, H = 0.3975) with six numer-
ical methods (see Hairer et al. (1991) for details of the various methods). None of
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Figure 1. Energy profiles during two-body scattering: (a) Euler’s method; (b) Heun’s method;
(c) fourth-order Runge–Kutta; (d) symplectic Euler; (e) leapfrog/Verlet; (f) third-order Ruth
method (− · − · −) and the ‘adjoint’ method (——). Step size for Euler’s method ∆t = 0.001;
all others used ∆t = 0.01.

these schemes is energy-conserving, so we expect the energy to fluctuate with time,
especially in the vicinity of the closest approach to the fixed body.

The graphs of numerical energy are shown in figure 1. For all of the six methods,
energy variation is mild until perihelion, where one observes a sudden rapid variation.
Qualitatively, the picture does not depend much on the step size or other parame-
ters. In the first three methods, the energy does not return to the precollision level,
whereas for each of the last three methods, the energy exhibits a remarkable stability
through the collision, generally returning to very near the precollision energy level.
Methods which have this property prove to be very effective for long-time-interval
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computations. The difference between the methods is that the first three are all non-
symplectic methods, while the last three are all symplectic, i.e. they preserve the
wedge product of differentials at each time-step:

dqn+1 ∧ dpn+1 = dqn ∧ dpn.

The drift can be explained with the aid of the modified equations (Warming &
Hyett 1974), a system of differential equations whose exact solution agrees with the
discretization to some arbitrary prescribed order.

Given an initial-value problem of the form
d
dt

z = f(z), z(0) = z0,

where f is a C∞ vector field. We compute numerical trajectories using the pth-order
numerical method

zn+1 = Φ∆t(zn).

Here zn is an approximation to z(tn), where tn = n∆t.
The idea of the modified equations is to construct a flow which coincides with the

numerical solution (to some arbitrary prescribed order). This can typically be done
by matching terms in an asymptotic expansion in powers of ∆t:

f̃∆t = f + ∆tf (1) + ∆t2f (2) + · · · .
We compute the terms in the expansion recursively by demanding that the solution
z̄ of

d
dt

z̄ = f̃∆t(z̄), z̄(0) = zn

agrees with the numerical solution after one step to a given order in ∆t.
The modified equations allow us to use continuous dynamical-systems concepts

to analyse near-to-the-identity discrete maps. An important property of the modi-
fied equations is summarized in the following ‘metatheorem’: the modified equations
inherit integrals, symmetries, reversing symmetries and symplectic structure from the
discretization. Special cases of this result are proved in Sanz-Serna & Calvo (1994),
Hairer (1994), Gonzales & Stuart (1996) and Reich (1999). The case of a reversing
symmetry has been considered in Hairer & Stoffer (1997).

When the discretization scheme is symplectic, i.e.

∂zΦ
T
∆tJ∂zΦ∆t = J, J =

[
0 I
−I 0

]
,

then the metatheorem implies the existence of a perturbed Hamiltonian expansion

H̃
(k)
∆t = H + ∆tH(1) + · · · ,

whose exact solution agrees, to any prescribed order in ∆t, with the numerical solu-
tion (Sanz-Serna & Calvo 1994). For example, in the case of the symplectic Euler
method applied to (2.1), the first two terms of the perturbed Hamiltonian are

H̃
(1)
∆t = H − 1

2∆tp

(
1
q2 −

l2

q3

)
.

More generally, we can compute the terms of the nearby Hamiltonian for a symplectic
Runge–Kutta or partitioned Runge–Kutta method by appealing to the theory of
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trees (Hairer 1994; Sanz-Serna & Calvo 1994), in which case the precise form of the
individual terms can be described (‘elementary Hamiltonians’). Still more generally,
such a series can be shown to exist for any symplectic map which is a smooth
perturbation of the identity (MacKay 1990; Benettin & Giorgilli 1994).

Fixing any finite number of terms, it is straightforward to show that each finite
higher-order term (involving ∆tk, k > 1) of the modified equations includes a recip-
rocal power of q and hence vanishes as q →∞, but this is not quite the whole story
since the series expansion does not usually converge. Benettin & Giorgilli (1994)
recently carried out an asymptotic study of the perturbed Hamiltonian expansion
to show that symplectic methods always have the property that the energy tends to
within O(exp(−K/∆t)) of the precollision energy following a scattering event. In the
few-body problem, this strong conservation property (the existence of the perturbed
Hamiltonian and its properties) apparently explains the superiority of symplectic
methods compared to non-symplectic methods. However, it is important to recog-
nize that the bound in terms of O(exp(−K/∆t)) is only valid in an asymptotic sense,
for small step sizes (for which the error is very small); at large step sizes, the energy
variation is complex and unpredictable. For more details, see Benettin & Giorgilli
(1994), Hairer & Lubich (1999) and Reich (1999).

Returning to figure 1d–f , we comment on the appearance of the graphs. For the
symplectic Euler method it is easy to see that

H̃(1)(q,−p) + H̃(1)(q, p) = 2H(q, p) + O(∆t2), (2.2)

and hence

H̃(1)(q, 0) = H(q, 0) + O(∆t2),

and, using (2.2) together with H(q,−p) = H(q, p), the Poisson bracket of H and
H̃(1) satisfies†

{H(q, p), H̃(1)(q, p)} = −{H(q, p), 2H(q, p)− H̃(1)(q,−p)}
= −{H(q, p), H̃(1)(q,−p)}+ O(∆t2).

Let Ψ(t) represent the energy at time t obtained by integrating the modified equa-
tions forward in time from a point (q, p) = (q∗, 0) at t = 0. Then

Ψ(t) = H(q∗, 0) +
∫ t

0
Ḣ ds

= H(q∗, 0) +
∫ t

0
{H(q, p), H̃(1)(q, p)} ds + O(∆t2).

Integrating backward in time is equivalent (up to the change in the sign of p) to
integrating forward in time using the Hamiltonian H̃(1)(q,−p); thus,

Ψ(−t) = H(q∗, 0) +
∫ t

0
{H(q, p), H̃(1)(q,−p)} ds + O(∆t2),

= H(q∗, 0)−
∫ t

0
{H(q, p), H̃(1)(q, p)} ds + O(∆t2).

† The Poisson bracket {f, g} := ∇qf · ∇pg − ∇pf · ∇qgq of functions f = f(q, p), g = g(q, p) can
be viewed as the time rate of change of a function f along a trajectory of the Hamiltonian system with
Hamiltonian g.
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Finally,

1
2(Ψ(t) + Ψ(−t)) = H(q∗, 0) + O(∆t2),

which explains the antisymmetric appearance of the observed energy curve in fig-
ure 1d. Higher-order symplectic methods would have a more complicated energy pro-
file even in the leading term. An example is the third-order Ruth method (Ruth 1983)
whose energy is shown in figure 1f (the adjoint method is also shown).

A more popular symplectic method for N -body calculations is the leapfrog or
Verlet integrator. This method also respects the time-reversal symmetry typically
present in physical systems:

Φ∆t ◦R = R ◦ Φ−∆t,

where

R

([
q
p

])
=
[

q
−p

]
.

This fact is a consequence of the fact that the adjoint method, Φ∗∆t := Φ−1
−∆t, coincides

with the method itself: Φ∗∆t = Φ∆t. The energy profile for the leapfrog method
is shown in figure 1e. Note that where the graph of the energy of the symplectic
Euler method is roughly antisymmetric about the point of collision, the graph of
the leapfrog scheme is symmetric about this point. This follows from the fact that
the perturbed Hamiltonian of the leapfrog method is, like the original Hamiltonian,
invariant under the involution p → −p, and hence an orbit crossing the symmetry
plane (here the line p = 0) must be symmetric about that plane.

In the next section, we will see that the symmetry property of the energy graph in
this application can be viewed as a consequence of just the preservation of symmetries
of the differential equations.

3. Variable step sizes: a reversible method

It is natural to consider the use of a variable step-size method for solving a problem
such as scattering for which the solution is subject to sudden catastrophic events.
Yet the results of using standard (non-conserving) variable step-size methods are not
much better than the results obtained for fixed step-size methods. An example of
a simple but popular variable step-size method is the Runge–Kutta–Fehlberg 4(5)
embedded pair scheme, as implemented in matlab4.0. This method computes the
new step by (1) applying a fourth-order Runge–Kutta method; (2) computing a
further fifth-order approximation using the computed values of the vector field; then
(3) adjusting the step size so that the difference between the two methods is less than
a prescribed tolerance. A typical energy profile is shown in figure 2a. The additional
dynamics induced by the step-size selection strategy are rather complicated, so one
cannot expect the energy profiles to scale in a simple way with the tolerance. Even if
the method used is symplectic, a traditional step-size variation method will destroy
the conservative property of the method (Calvo & Sanz-Serna 1993).

A better way to incorporate time-step variation in a conservative system is to use
a time transformation which preserves structure.
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Figure 2. Energy profiles of variable step-size methods: (a) Runge–Kutta–Fehlberg 4(5),
tolerance 0.001; (b) a reversible method based on implicit midpoint, fictive step ∆τ = 0.2.

(a) Time transformations of Sundman and Poincaré

A general Sundman transformation of time introduces a new ‘artificial time’ vari-
able τ by

dt

dτ
= g(q, p),

where g is an arbitrary smooth, positive, scalar-valued function. The differential
equations can then be written in terms of the independent variable τ as

d
dτ

q = g∇pH,

d
dτ

p = −g∇qH.

A solution of the scaled system is thus equivalent to that of the original system up
to a reparametrization of time.

If the rescaled equations of motion are integrated with fixed step sizes ∆τ in
artificial time, it is as if the time-step was being adjusted according to the size of the
scaling function g:

∆t ≈ g∆τ.

For Hamiltonian systems, it may be more appealing to use a Poincaré transfor-
mation of the form

H̃ = g(q, p)(H −H0),

where H0 is the energy of a particular desired orbit. The differential equations cor-
responding to H̃ can be written as

d
dτ

q = g∇pH + (H −H0)∇pg, (3.1)

d
dτ

p = −g∇qH − (H −H0)∇qg. (3.2)
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Note that along any particular orbit with energy H = H0, the second term on the
right-hand side of each of the differential equations will vanish and we are left with
the Sundman transformed equations of motion. However, in the course of numerical
integrations, there are typically some errors introduced in the energy, and the two
approaches are then quite different.

The two types of time transformations provide different approaches to adaptive
integration. If the discretization of the reparametrized equations preserves a geomet-
ric structure, then we can view the resulting method as a structure-preserving vari-
able step-size method. For example, when the Poincaré transformation is used, then
a symplectic step-size variation method can be obtained (Reich 1999; Hairer 1997);
e.g. a symplectic second-order method is obtained by solving (3.1), (3.2) using the
implicit generalized leapfrog discretization (Lobatto IIIA-B partitioned Runge–Kutta
method) (Hairer 1997).

If a Sundman time transformation is positive and invariant under the involution
p → −p, then the rescaled equations of motion will possess the time-reversal sym-
metry, and use of an appropriate discretization scheme results in a time-reversible
variable step-size strategy (Stoffer 1995; Hut et al. 1995; Huang & Leimkuhler 1997).

We will illustrate the use of the time-reversible method with the simple scattering
problem. We take

dt

dτ
= g :=

q2

1 + q2 .

This time transformation is carefully chosen so that (1) at a close approach (q ≈ 0)
a unit step in τ corresponds to a very small step in t (proportional to |q|2); while
(2) when q is large the steps in t corresponding to fixed steps in τ remain bounded.
Applied to the polar Kepler problem, the time transformation leads to the equations

q̇ = g(q)p,

ṗ = g(q)
(
− 1

q2 +
l2

q3

)
.

These equations are no longer Hamiltonian, although the time-reversal symmetry is
preserved. We solve the differential equations using the implicit midpoint method,

q̄ = qn + 1
2∆τg(q̄)p̄, q̄ = 1

2(qn + qn+1),

p̄ = pn + 1
2∆τg(q̄)

(
− 1

q̄2 +
l2

q̄3

)
, p̄ = 1

2(pn + pn+1),

and also update the time variable using this method:
tn+1 = tn + ∆τg(q̄).

The approach described is not symplectic, yet its energy profile, shown in figure 2b,
is similar to those of the symplectic schemes. This reflects a frequent observation in
the literature: time-reversible integration schemes give excellent results in long-term
integrations. For a general discussion of symmetries and reversing symmetries in
discretization see McLachlan et al. (1998). For a recent example comparing symplec-
tic, reversible and traditional integration methods for a large dimensional nonlinear
physical problem (a Heisenberg ferromagnetic system), see Frank et al. (1997). While
we do not have a complete understanding of why the reversible methods perform so
well, we can give a fairly detailed explanation in the case of the Kepler problem
where the symmetry of orbits is the key.
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(b) Orbital symmetry in scattering with reversible adaptive methods

For the one-degree-of-freedom Kepler problem in polar coordinates, it is easy to
see why the energy rebounds to the precollisional level when a reversible adaptive
method is used. Observe that the modified equations (any finite truncation of the
modified equations) must also possess the reversing symmetry (by the metatheorem
stated in the last section). The orbit of the modified equations crosses the symmetry
line p = 0, say at q = q∗. Integrating the equations forward in time from (q∗, 0) or
backwards in time from this point results in exactly the same trajectory up to the
sign of p; hence the energy is also the same after integrating τ units either forward
or backward in time, since H is an even function of p. This explains the symmetry
observed in figure 2.

The argument does not immediately extend to the planar Kepler problem treated
in the standard Cartesian coordinates, since orbits do not penetrate the symmetry
plane p1 = p2 = 0. Nevertheless, an energy stability result can still be expected for the
Kepler problem, provided both the time transformation and discretization preserve
both the symmetry and time-reversal symmetry of the system. This result can be
seen as an application of the analysis of Calvo & Hairer (1995) based on KAM theory
for time-reversible maps, but for this special case, we prefer the following elementary
explanation, which provides some additional insight.

After Sundman transformation, we have

q̇ = g(q, p)p, (3.3)

ṗ = −g(q, p)q/|q|3. (3.4)

The Kepler problem (g = 1 in (3.3), (3.4)) possesses both a reversing symmetry
R : t → −t, p → −p, and symmetries of the form S : q → Sq, p → Sp for any
orthogonal transformation S. (There is also an invariance under translation of time.)
These symmetries are also preserved by the rescaled equations provided

g(q, p) > 0, (3.5)
g(q,−p) = g(q, p), (3.6)

g(Sq, Sp) = g(q, p), SST = I. (3.7)

Not wishing to introduce an overly grandiose term for the property, a Sundman
transformation preserving (3.5)–(3.7) will be termed appropriate for the Kepler prob-
lem. In particular, any g = g(|q|) > 0 is an appropriate Sundman transformation.
Similarly, we will call a discretization scheme appropriate if it respects the symmetry
and reversing symmetry of a given system.

In terms of a given orbit O = {(t, q(t), p(t))|t ∈ R} (figure 3a), the time-reversal
symmetry means that RO = {(t, q(−t),−p(−t))|t ∈ R} is also an orbit (figure 3b).
The symmetry means that SO = {(t, Sq(t), Sp(t))|t ∈ R}, where SST = I, is
again an orbit. Note that the symmetry group includes both rotations and flips
(figure 3c, d).

The orbits of the Kepler problem are axially symmetric, implying that there is
a particular flip symmetry which, when followed by a time-reversal (and possibly
a time translation), leaves the orbit invariant. The main result of this section is as
follows.
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(a) (b)

(c) (d)

Figure 3. (a) A Kepler orbit; (b) its time-reversal; (c) a flip symmetry;
(d) a rotational symmetry.

Theorem 3.1. In the Kepler problem treated with an appropriate Sundman
transformation and an appropriate discretization, every finite discrete orbit obtained
with a sufficiently small time-step is axially symmetric.

Proof . The proof relies on a variation of the metatheorem mentioned in § 1: namely
that the modified equations for an appropriate discretization of the Kepler problem
have the corresponding symmetry properties. The key problem is to identify an axis
of symmetry for the discrete orbit. We sketch the proof for the case of a positive
energy orbit (H0 > 0).

Perihelion is distinguished by the orthogonality condition q · p = 0; the latter
quantity changes sign through a collision. Now, applying any appropriate Sundman
transformation to the Kepler problem, one sees from (3.3), (3.4) that

d
dt

q · p = 1
2g|p|2 + gH0 > 0,

and hence q · p is strictly monotone increasing along such an orbit. We can assume
without loss of generality that the perihelion point (q · p = 0) occurs at t = 0
(figure 4a).

Consider a convergent appropriate discretization method and an orbit

O = {(t, q̄(t), p̄(t))|t ∈ R}
of (a finite truncation of) the modified equations, which starts from some point
(−T, q(−T ), p(−T )) of the true orbit. Set µ̄(t) := q̄(t) · p̄(t).
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(b)

q

p
q.p<0

q.p=0

q.p>0

(a)

Figure 4. (a) q · p is monotone increasing; (b) an orbit (thick dashed line) with a numerical
solution (boxes) and a corresponding orbit of the modified equations (thin solid line).

Since q · p is monotone in t, for a sufficiently small time-step, µ̄ must be monotone
on [−T, T ] (by convergence) and will have a zero, say at t = t∗ and (q∗, p∗) =
(q̄(t∗), p̄(t∗)). With perhaps a shift in time, we can assume without loss of generality
that t∗ = 0.

q∗ now defines our axis of symmetry. Let S∗ be the flip symmetry defined by the
ray through q∗. That is, we define S∗ as the linear plane symmetry described by the
orthogonal transformation S∗ = 2q∗qT

∗ /|q∗|2 − I.
Applying the symmetry S∗ to O, we get a new orbit. Applying the time-reversal

symmetry R to O, we get yet another orbit. Clearly, S∗O includes the point (0, q∗,
−p∗), since S∗q∗ = q∗, S∗p∗ = −p∗. On the other hand, this point is also on the orbit
RO. By uniqueness of solutions to the initial-value problem, the two orbits must be
equivalent. Thus, S∗O = RO, so RS∗O = O, and O is therefore axially symmetric
(figure 4b). �

The argument of theorem 3.1 implies that the energy variation, too, is symmetric
with respect to the perihelion approach. The theorem could easily be extended to
include arbitrary central-force two-body problems in R3, for which the solutions are
planar and possess the same symmetry features.

The argument of theorem 3.1 breaks down, however, when three bodies interact
at close range, and the energy can no longer be expected to return to very near
its precollision value following such an event. Nonetheless, for the perturbed Kepler
problem or, for that matter, the N -body problem, orbits appear Keplerian in the
vicinity of close approach due to the local dominance of the coulombic force and the
rarity of three-body collisions (Siegel & Moser 1971).

As we shall see in the following subsection, it is possible to formulate a powerful
explicit scheme based on the reversible adaptive framework, and these methods can
be quite powerful for N -body systems, especially when employed in combination
with regularizing coordinate transformations.

(c) The adaptive Verlet method

The adaptive Verlet method of Huang & Leimkuhler (1997) provides a framework
for discretizing the reparametrized equations in a reversible way. For a Hamiltonian
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system of the form H(p, q) = T (p) + V (q), a related fully explicit method consists
of introducing a new variable ρ representing the reciprocal of the time-scaling factor
and computed according to a symmetric recurrence relation. We then discretize by
a three-stage scheme (Holder et al. 1998).
(I) Symplectic Euler half-step:

qn+(1/2) = qn +
∆τ

2ρn
∇pT (pn),

pn+(1/2) = pn − ∆τ

2ρn
∇qV (qn+(1/2)).

(II) Update of the scaling factor ρ via the formula

ρn + ρn+1 =
2

g(qn+(1/2), pn+(1/2))
. (3.8)

(III) Symplectic Euler adjoint half-step:

qn+1 = qn+(1/2) +
∆τ

2ρn+1
∇pT (pn+1)

pn+1 = pn+(1/2) − ∆τ

2ρn+1
∇qV (qn+(1/2)).

This method is a time-reversible generalization of Verlet (obtained when g ≡ 1).
It also conserves the angular momentum of a system of particles. We sometimes use
the method shifted by one half time-step, so that ρ is computed at the beginning,
rather than in the middle, of each step. An asymptotic error analysis of the adaptive
Verlet method may be found in Cirilli et al. (1999).

Note that the adaptive Verlet method is appropriate in the terminology of the last
subsection.

The adaptive Verlet method is similar to the ‘time-symmetrized’ integrators dis-
cussed in Hut et al. (1995, 1999) and Funato et al. (1996), with a key difference:
the latter methods are all based on an implicit formalism and require multiple force
evaluations at a time-step if the nonlinear equations are to be solved to round-off
and the method remains truly time-reversible.

Heggie (1974) suggested using time transformations alone to regularize N -body
problems; his idea can be combined with the reversible schemes. Heggie used

g = 1/U,

where U is the potential energy. For the Kepler problem, this means g = |q|. In our
experience this gives some improvement over the unmodified Kepler problem, but, for
stable integration in the presence of perturbations, a much stronger transformation
of the form

g = |q|2
is needed to carry out integration near the close approaches. The use of such an
approach based solely on time transformation is not efficient for even moderately
difficult trajectories in our experience (see § 5).

In Rzazewski et al. (1994), the singularity of the coulombic potential is removed
by incorporating a small parameter, i.e 1/r → 1/(r + ε). This changes the structure
of phase space in a fundamental way and eliminates many complicated orbits. While
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some justification is occasionally given for this type of ‘smoothing’ in atomic problems
on physical grounds (for multielectron atoms, the perturbation can be viewed as
induced by an excited electron in a close orbit around the nucleus (see Rzazewski et
al. 1994)), we prefer an approach based on the use of a combination of coordinate
and time transformations to regularize the closest two-body approaches.

4. Fast Kepler solver

A coordinate transformation (q, p) 7→ (Q, P ) of the form

q = φ(Q),

φ′(Q)Tp = P,

where φ is a diffeomorphism of RN , is called a ‘cotangent lift transformation’ (Mars-
den 1992). Such a map is always necessarily symplectic (canonical), meaning that∑
i dqi∧dpi ≡

∑
i dQi∧dPi. Under such a transformation, the Hamiltonian becomes

H̄(Q, P ) = H(φ(Q), φ′(Q)−TP ).

For the purposes of numerical integration, we can use a lift transformation as
follows: (1) map initial conditions (q0, p0) to (Q0, P0) under the transformation; (2)
integrate the differential equations for the transformed Hamiltonian H̄ for some
desired time t; and (3) map the solution back under the inverse transformation.
Usually, we will have to perform step (2) using some (ideally symplectic) numerical
integration procedure.

The traditional way of regularizing two-body motion in N -body gravitational sim-
ulations is via the KS transformation. The idea is to introduce both coordinate and
time transformations that reduce the two-body problem to a linear system which
is then easily solved. In N -body simulations, the coordinate transformations have
the effect of stabilizing the numerical dynamics. This method, which generalizes the
planar Levi–Civita regularization, can be implemented in a canonical framework. In
R4 we introduce the coordinate transformation[

q
0

]
= φ(Q) = L(Q)Q, (4.1)

where Q is a 4-vector and L(Q) is the KS matrix

L(Q) =


Q1 −Q2 −Q3 Q4
Q2 Q1 −Q4 −Q3
Q3 Q4 Q1 Q2
Q4 −Q3 Q2 −Q1

 =: |Q|R(Q),

with R an orthogonal matrix. The transformation has the property |q| = |Q|2.
Note that

φ′(Q) = 2L(Q),

and hence the canonical momenta P to Q are related to p directly by

φ
′T
[
p
0

]
= P ⇒

[
p
0

]
=

1
2|Q|RP. (4.2)
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The KS transformation introduces an S1 symmetry through the following quad-
ratic constraint on Q, P :

Q4P1 −Q3P2 + Q2P3 −Q1P4 = 0. (4.3)

To put this another way, φ can be viewed as a map from the reduction of R4 modulo
S1 into R3. With this interpretation, the inverse map is well defined and easily
computable (Kustaanheimo & Steifel 1965).

The Hamiltonian in the new variables is

H = 1
8
|P |2
|Q|2 −

1
|Q|2 .

After a Poincare-type time transformation, we get a linear Hamiltonian system:

H̃ = |Q|2(H −Hn) = 1
8 |P |2 − 1−Hn|Q|2,

where Hn is the energy at the beginning of the time-step. It is important to ensure
that the initial values for Q and P are chosen so as to satisfy the constraint (4.3),
but this equation then becomes an integral invariant of the transformed system (so
it is satisfied automatically by the true flow).

The Poincaré transformation introduces a nonlinear scaling of time, i.e. the equa-
tions of motion are

d
ds

Q = 1
4P, (4.4)

d
ds

P = 2HnQ, (4.5)

dt

ds
= |Q|2.

Resolving the motion thus requires propagation of Q, P as the flow of a simple linear
system, coupled to the scalar differential equation

ds

dt
= |Q(s)|−2.

If the solution is needed at a fixed time T , the resolution of the corresponding fictive
time S(T ) is non-trivial, requiring the computation and inversion of the antiderivative
function for |Q|2. To perform this calculation, we write

F (S) := T −
∫ S

0
|Q(s)|2 ds, (4.6)

and apply scalar Newton iteration:

S(m+1) = S(m) − F (S(m))
F ′(S(m)

= S(m) +
F (S(m))
|Q(S(m))|2 .

Since Q is determined by solving linear differential equations, the formulae can be
greatly simplified; however, this calculation introduces some overhead in the form of
transcendental functions which must be re-evaluated several times until convergence.

Since our method relies on very frequent computations of two-body problems,
including resolution of the inverse time transformation, it becomes an expensive
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component of the algorithm. We have found that an alternative approach using
the implicit midpoint discretization to solve the KS-transformed equations together
with the equation of time is reliable and substantially cheaper than using the exact
quadrature. Specifically, we solve

Qn+1 = Qn + 1
4∆sPn+1/2, (4.7)

Pn+1 = Pn + 2∆sHnQn+1/2, (4.8)

∆t = ∆s|Qn+1/2|2, (4.9)

Qn+1/2 = 1
2(Qn + Qn+1),

Pn+1/2 = 1
2(Pn + Pn+1).

To solve this system, we write

Qn+1/2 = Qn + 1
8∆s(Pn + ∆sHnQn+1/2),

which gives an equation solvable for Qn+1/2:

Qn+1/2 = (1− 1
8∆s2Hn)−1(Qn + 1

8∆sPn).

Hence, after computing the squared two-norm and substituting into the equation of
the time-step (4.9), we arrive at

F (∆s) := (1− 1
8∆s2Hn)2∆t−∆s(|Qn|2 + 1

4∆sQn · Pn + 1
64∆s2|Pn|2) = 0. (4.10)

The equations thus reduce to a fourth-degree polynomial equation for ∆s, and no
transcendental functions need to be evaluated. Although this quartic equation could
be solved in radicals, it is much more economical to use a Newton iteration to resolve
the time variable. As a stopping criterion for the Newton iteration, we used

δ := |F/(∆sF ′)|, δ/rtol + |F |/atol < 1,

where, on a Pentium PC using double precision, rtol = 10−8, atol = 10−11 worked
well. Occasionally, we encountered difficulty with Newton convergence during very
close approaches and suggest that a more robust modified Newton iteration (Bulirsch
& Stoer 1980) should be used in software.

The Kepler solution (and the resolution of the time variable) represented a sub-
stantial component of overall CPU time in our experiments. In typical runs, the
fast Kepler solver reduced the overall CPU time for the code by a factor of more
than 1.5 compared to using the exact solution of (4.4), (4.5), although this difference
is overshadowed by the extraordinary differences (discussed below in the numerical
experiments) in performance of the regularizing scheme compared to methods using
fixed steps or only a variable step size.

The implicit midpoint method is symplectic and preserves all quadratic first inte-
grals, such as the energy in transformed variables and the special constraint (4.3)†.
Except at extraordinarily close approaches to the fixed body (see § 7), we were unable
to observe any substantive differences between algorithms based on exact quadrature
and the fast Kepler solver in experiments, other than a substantial gap in perfor-
mance. During very close approaches (within, say, 10−7) the exact Kepler quadrature
should probably be used for improved robustness.

† Observe that the simultaneous conservation of energy and symplectic structure is only an apparent
contradiction of the famous theorem of Ge & Marsden (1988), since the conditions of that theorem
specifically exclude integrable cases.
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5. Perturbed Kepler motion

In this section, we will use the KS transformation to treat perturbed Keplerian
motion, while taking advantage of the superior conservation properties of reversible
adaptive integrators. The idea is to find a way to separate appropriately the com-
putation of the Keplerian dynamics from the perturbation within a time-step. Our
approach also takes advantage of the fast Kepler solver and the time transformations
mentioned in the previous sections to handle close approaches. The idea of using a
Hamiltonian splitting into Kepler problems plus perturbations was used, for exam-
ple, in Wisdom & Holman (1991), for smooth planetary dynamics not involving close
approaches of bodies.

Consider the case of a perturbed two-body problem with Hamiltonian

H = 1
2 |p|2 − (1/|q|) + Ĥ(p, q). (5.1)

Here we assume that Ĥ is a small perturbation.
One approach is to split H into the Kepler part and the perturbation, solving first

the one with the KS transformation and the other with some symplectic integrator.
That is, we set H̄ = 1

2 |p|2 − (1/|q|), and use the symmetric splitting

exp ∆tH = exp 1
2∆tH̄ ◦ exp ∆tĤ ◦ exp 1

2∆tH̄ + O(∆t3),

where exp tH is simply notation for the time t flow map of the Hamiltonian H. We
then solve H̄ by introducing new variables Q, P and integrating the reparametrized
system

H̃ = |Q|2(H̄ − H̄0). (5.2)

In standard practice (Aarseth 1985), non-symplectic non-reversible methods would
be used to integrate (5.1). In general it is found necessary to employ some sort of
variable step-size procedure in addition to the use of regularization.

We also found it necessary to incorporate a variable step size, but we do so in
a time-reversible way, using an outer Sundman transformation together with the
adaptive Verlet method to perform our integration. For reasons discussed in the
next section, we use a Sundman transformation of the form

g =
1

1 + |q|−1.5 .

We will refer to this general approach as the reversible adaptive regularization or
RAR method.

As a first experiment, we solved the perturbed Kepler problem with Hamiltonian

H = 1
2 |p|2 −

1
|q| −

1
|q − q1| ,

viewed as describing a moving body around a fixed body located at the origin, in
the presence of another fixed distant body (at q1).

Placing the disturbing body at q1 = (0, 0, 5), we integrated what would be a
moderately high eccentricity orbit for the unperturbed system using initial conditions
q(0) = (1.0, 0.0001, 0.0), p(0) = (−1.0, 0.0, 0.0).

Graphs of the xy- and xz-projections of the trajectory are shown in figure 5 for
an integration on [0, 1000]. The full orbit appears to be quasi-periodic and is built
up as follows in the xz-projection: first a sequence of Kepler orbits is constructed
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Figure 5. Views of the orbit: the disturbed Kepler problem.
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Figure 6. Energy errors for ∆τ = 0.01.

on the right half of the nucleus, then the process is repeated on the left half. In
each such basic cycle, the successive orbits vary from moderately eccentric to nearly
circular (which marks the transition to the other side of the diagram). There is also a
small oscillating precession visible in the xy-plane projection. A graph of the energy
error versus time is shown in figure 6. Note that the energy is highly stable and that
there are no large spikes, despite rather close approaches to the origin (within about
0.001). The quasi-periodic character of the motion is well resolved and there is no
apparent systematic drift of energy.

The solution of the Kepler problems in the RAR scheme requires the accurate
recovery of the time variable (via a quadrature) and inversion of the time trans-
formation at each step if the step is to remain symplectic and the overall method
reversible. In an effort to avoid this cost, we tried methods that reverse the order of
time and coordinate transformations, i.e. first perform a Poincaré transformation

H̃ = |q|(H̄ + Ĥ −H0). (5.3)
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Figure 7. Comparison of work with energy for three methods: (1) (–◦–), adaptive Verlet (no
regularization); (2) (–+–), time transformation followed by splitting; (3) (–∗–), the RAR method.

We can then split the Hamiltonian into a Kepler part and a perturbation:

H̃ = H̃(1) + H̃(2), H̃(1) = |q|(H̄ −H0), H̃(2) = |q|Ĥ. (5.4)

The individual terms are then integrable successively: H(1) by introducing the KS
coordinate transformation and H(2) either by exact integration or by an appropriate
numerical scheme. The key point is that both parts of the Hamiltonian are integrated
in the same fictive time variable, so they are automatically synchronized and there
is no need to invert the time transformation; the computation is thus completely
explicit.

However, this method did not compare favourably with the RAR method. When
we integrated the disturbed Kepler problem, we still observed the noticeable spikes
in energy present in fixed step-size and unregularized variable step-size simulations,
although these were somewhat milder than before. The additional use of a Sundman
transformation had little effect. The problem appears to be due to the fact that the
value H0 is the total energy of the system, not the energy of just the Kepler part
in the vicinity of the close approach. During the close approach, this perturbation is
significant and results in qualitatively incorrect dynamics.

Given that the RAR method can essentially stabilize the energy with respect to
collisions, we see little advantage in using the alternative scheme.

We place the different schemes mentioned so far into perspective by constructing
a work–energy diagram (figure 7), which compares the efficiencies of (1) the adaptive
Verlet (unregularized) method with g = (1+ |q|−2)−1; (2) the modified scheme based
on time transformation followed by splitting (5.4); and (3) the RAR method with
g = (1 + |q|−1.5)−1. Each point in the diagram represents one complete approximate
trajectory on [0, 100], requiring the indicated number of time-steps and producing
the indicated maximum energy error. While the cost of a time-step is not the same
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for each of the methods, the additional work to perform coordinate transformations
and to solve the scalar quartic polynomials required by the fast Kepler solver is easily
justified by the huge reduction in numbers of time-steps needed for given accuracy.

The remarkable performance improvement obtainable with the use of the regulariz-
ing transformation makes the procedure indispensable for perturbed Kepler motion.
The combination of this procedure with reversible adaptive methods enables the
efficient simulation of long-time-scale phenomena with little degradation of quasi-
periodic structure, as we will see in the next sections.

6. Atomic dynamics

Atomic dynamics can be handled using a generalization of the RAR method. This is
possible because each electron generally participates in only two types of encounters:
(1) collisions with the nucleus; and (2) interactions with the other electrons (or
other perturbative forces). In this section, we outline an RAR-based algorithm for
treating arbitrary atoms. Details of the algorithm and an extension to treat applied
electromagnetic fields may be found in Leimkuhler (1998).

The Hamiltonian for the atomic problem is, in standard atomic units and in the
absence of fields,

H =
N∑
i=1

1
2 |pi|2 −

N∑
i=1

k

|qi| +
N−1∑
i=1

N∑
j=i+1

1
|qi − qj | ,

where k is the charge on the nucleus. This Hamiltonian splits into N + 1 parts:

H(i) = 1
2 |pi|2 −

k

|qi| , i = 1, . . . , N,

Ve−e =
N−1∑
i=1

N∑
j=i+1

1
|qi − qj | .

Each of the Kepler Hamiltonians can be integrated using the fast Kepler solver
of § 4, while the electron interaction term Ve−e is exactly integrable since it depends
only on q.

The last component is the incorporation of a reversible step-size variation pro-
cedure. The actual time-step needs to be decreased according to the difficulty of
the Kepler problems (i.e. when |qi| becomes small), since these become more sensi-
tive to the perturbing forces during close approach. A second problem has to do with
electron–electron interactions, which can occasionally lead to very strong forces, espe-
cially if one electron has recently undergone a strong acceleration via the Coulombic
potential. Both of these difficulties are remedied by the use of an outer time trans-
formation of the Sundman type.

(a) A Sundman transformation for atomic systems

The design of this time transformation is somewhat tricky. We considered various
controls based on the two position-dependent indicators (1) ren = mini |qi|, and (2)
ree = mini6=j |qi − qj |, of the form

g(q) =
1

r−aen + r−bee + 1
. (6.1)
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Actually, a variety of different control strategies were explored, but others generally
were less reliable; the suggested control proved to be remarkably robust when applied
to a wide range of problems. There are good reasons for the choice of each term in
(6.1), and the optimal powers a and b can be justified on the grounds of model
problems and numerical experiments.

(i) Electron–electron interactions

The electron–electron interactions are not treated with any regularization other
than the time transformation itself. We can gain insight into this term by considering
the purely repulsive one-degree-of-freedom problem with the Hamiltonian

H = 1
2p2 + (1/q), q > 0. (6.2)

We follow the approach given in Bond & Leimkuhler (1998) to obtain an appro-
priate time transformation for solving this model problem.

After a time-rescaling g = qβ , the equations of motion for (6.2) are

q̇ = qβp,

ṗ = qβ−2.

Along an orbit, the material point starts from a distant point (momentum p−∞) and
approaches the point of collision q = q̄. During a short time-interval, the momentum
changes sign and the particle position tends to infinity with asymptotic velocity
p+∞ = −p−∞. We next calculate the approximate duration of the collision.

First observe that, far from the wall, the energy is all in the kinetic part, so we
have

|p±∞| =
√

2E,

where E is the constant total energy. At the point of collision, on the other hand,
p = 0 and q = q̄, implying that

1/q̄ = E.

This allows us to solve for p±∞ in terms of q̄:

|p±∞| =
√

2E1/2 =
√

2q̄−1/2. (6.3)

Near the point of close approach, the positional motion slows, almost to a stop,
while the velocity changes sign very suddenly according to the equation

ṗ ≈ αq̄β−2;

thus, with τ the total time for this collision,

p+∞ − p−∞ ≈ q̄β−2τ.

But since p−∞ = −p+∞ and using (6.3), we have

2
√

2q̄−1/2 ≈ q̄β−2τ,

or

τ ≈ 2
√

2q̄−β+3/2 = 2
√

2Eβ−3/2.

We would like to use a value of β for which the collision time is independent of
the strength of the collision. This evidently occurs for β = 3

2 . With this choice, the
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Figure 8. The first test orbit for helium, near a Langmuir orbit, for which the time-step
selection is dominated by electron–electron interactions: (a) to T = 30; (b) to T = 300.
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Figure 9. Work–energy diagrams comparing different values of b.

stronger collisions are ‘slowed down’ in the rescaled time so that they evolve on the
same fictive time-scale as weak collisions.

To test the design of the term based on the electron–electron potential, we used
the orbit beginning from the initial conditions q1 = (1, 0, 0), q2 = (−1, 0, 0), and
p1 = p2 = (0, 1, 0). The two electrons follow symmetric orbits in the left and right
half-planes consisting of long smooth motions punctuated by varying strength e–e-
type collisions near the y-axis (the motion is shown in figure 8). This orbit is related
to the Langmuir periodic orbit (Steckel & Jaffe 1998).

Fixing a = 1.5, we computed several trajectories on [0, 30] for different values of b
(b = 0.0, 1.0, 1.5, 2.0, 2.5) and of the step size; the resulting work–energy diagrams for
each value of b are shown in figure 9. Clearly, there is a substantial gain in efficiency
from involving ree in the control. Although the optimal value in this experiment
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Figure 10. The energy errors and time-step variation observed for b = 2, ∆t0 = 0.01.

occurs at around b = 2—a discrepancy with our theoretical discussion—the results
for b = 1.5 are similar. The resulting energy error and step-size graphs are shown in
figure 10. Additional discussion and examples may be found in Bond & Leimkuhler
(1998).

(ii) Electron–nucleus interaction

For the attractive electron–nucleus interaction, we take another point of view,
considering the stability of the Kepler problem with respect to perturbations. The
equations of planar Kepler motion are

q̇ = p,

ṗ = −q/|q|3.
The variational equations describe the change over time in a perturbation evolved

along a given trajectory by

d
dt

[
δq
δp

]
=

 0 1

− 1
|q|3 I + 3

qqT

|q|5 0

[δq
δp

]
=: A(q)

[
δq
δp

]
.

We consider the behaviour in the vicinity of q̄, the point of close approach along the
orbit. At this point, the linearization approximately describes the motion, since the
rapidly changing momentum does not appear in A(q̄).

The eigenvectors and eigenvalues of A = A(q̄) are

ξ1,2 =
[

q̄⊥

λ1,2q̄
⊥

]
, λ1,2 = ±i|q̄|−3/2,

ξ3,4 =
[

q̄
λ3,4q̄

]
, λ3,4 = ±

√
2|q̄|−3/2,

where q⊥ is the orthogonal complement to q.
Due to the extreme close approach in the attractive coulombic potential, the posi-

tive eigenvalue acting in the transverse direction to the orbit is potentially excessively
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Figure 11. The second test orbit for helium. Here the time-step is dominated by close
approaches to the nucleus by the inner electron.

large. It can introduce an instability if excited by the numerical process. Let Φ̂ rep-
resent the propagator in one step. We have

Φ̂ ≈ expA(q̄)∆t,

with a principal unstable eigenvalue of

γ := exp
√

2|q̄|−3/2∆t.
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Figure 12. Work–energy diagrams comparing two different values of a; the computation was
impossible to carry out for smaller values of a due to instability.
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Figure 13. The energy errors and time-step variation observed for a = 1.5, ∆t0 = 0.01.

To control the potential for instability, it is thus necessary to limit the step size with

∆t ∼ |q̄|3/2∆τ

during the close approaches. In this way, the growth factor γ is independent of q and
limited to

γ ∼ 1 + O(∆τ).

To test the design of the term based on the electron–nucleus potential, we used
the orbit shown in figure 11. Here the first electron is started in an inner orbit, with
q1 = (0.2, 0, 0), p1 = (0, 1, 0), while the second electron begins with q1 = (1, 0, 0), q2 =
(0, 1, 0). The motion of the inner electron is strongly perturbed by the outer body,
and the result is an essentially ergodic motion within a bounded region. The electron
makes many very close approaches to the nucleus which would, if not resolved using
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Figure 14. Scattering of He+.

the regularizing transformation, be essentially impossible to integrate numerically.
Note in particular the appearance of Keplerian orbits during very close approach.

We conducted a sequence of experiments, fixing b = 2.0 and varying a. In this
case, it proved impossible to integrate with values of a < 1.5 (the step scaling factor
ρ tended to infinity, indicating instability of the integration process); this agrees
with the observations made for the Kepler problem. For a = 1.5, on the other hand,
the integration was very robust, and integration could also be carried out for larger
values of a. We compare a = 1.5 and a = 1.75 in figure 12, showing the superiority
of the lower value of a. For higher values of a, the results were substantially worse.
With a = 1.5, the variations in time-step and the corresponding well-behaved energy
error are shown in figure 13.

The energy variation is relatively moderate in this example, with the ‘peaks
removed’ from the corresponding fixed step-size energy behaviour.

7. Application: He+ scattering

Gu & Yuan (1993) investigated the classical planar scattering of an electron from
He+. Using symbolic dynamics to organize the trajectories, they investigated escape
rates and chaotic intermixing. Instead of using the KS transformation, as here, the
authors describe an ad hoc integration method which (1) does not integrate the close
approach (trajectories are tracked only to within about 10−5 of the nucleus); and (2)
uses a standard variable-step Runge–Kutta method.

Our experiments are not precisely identical to those of Gu & Yuan (1993) but are
essentially equivalent. We used the same energies for each particle, and similar initial
orbits. The only difference was in the exact configuration of the distant electron at
time t = 0. In our experiment, the far electron is fired from a point on the circle of
radius R = 100: q2(0) = (−

√
R2 − β2, β) with p2 = (0.65, 0), with the inner electron

started from initial data q1(0) = (0.833, 0), p1(0) = (0, 1.55). The situation is shown
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Figure 15. Scattering diagrams for the collisional region (x, y) ∈ [−3, 3]× [−3, 3].
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Figure 16. Collision times for β ∈ [1.5, 2.5], ∆τ = 0.01.

diagrammatically in figure 14. In Gu & Yuan (1993), the parameter β is obtained
by simulating the motion of an electron in unit-charge coulombic field up to the
circle of radius R from an unspecified distant point; this also results in a very slight
change in p2; the difference in initial data is qualitatively inconsequential, effectively
summarized by a slight shift in β. The computation is stopped following collision
after one of the electrons reaches the circle of radius R, at which point the total
collision time Tc is recorded.

We first performed a series of 1000 computations with ∆τ = 0.01, graphing Tc as a
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(b) corresponding precessing elliptical orbits of the inner electron.
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Figure 18. Energy error (upper graph) and step-size variation (lower) for β = 2.1, ∆τ = 0.01.

function of the scattering parameter β ∈ [1.5, 2.5]. Scattering diagrams for β = 1.5–
2.3 in increments of 0.1 are shown in figure 15. Intervals in β of smoothly varying Tc
are intermixed with chaotic regimes (figure 16). Large collision times are associated
to long bounded excursions by one or the other electron (figure 17a). During such
an excursion, the inner electron path is a series of short-period precessing elliptical
orbits (slowly perturbed Kepler motion), often highly eccentric (figure 17b). The
energy error increases markedly at the instant when the scattering electron arrives
near the unit circle. This rise in energy is not unexpected since the trajectory becomes
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Figure 19. Collisions times converge only in the smooth regime: (a) ∆τ = 0.01; (b) ∆τ = 0.005;
(c) ∆τ = 0.0025.
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Figure 20. Superposition of graphs in figure 19.

markedly more difficult to integrate at this instant. Figure 18 shows the energy error
and step size for the trajectory with β = 2.1. A reduced fictive time-step ∆τ in
the smooth regime correctly reduces the error by the square of the reduction factor
(second-order integration); however, this does not automatically hold in the chaotic
regime, since a small change in the time-step may lead to a drastic change in the
solution behaviour (and potentially worse energy error).

Gu & Yuan (1993) relied on the topological features of orbits computed in the
chaotic regimes to calculate ‘escape rates from the chaotic repellers’. The numerical
problem becomes more difficult in the chaotic regime, where many close approaches
increase the sensitivity of the solution to small perturbations; nonetheless, the re-
versible adaptive regularization is generally able to produce reasonable trajectories,
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Figure 21. Energy errors as a function of the scattering parameter β for ∆τ = 0.01.
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Figure 22. Energy errors by step size: (a) ∆τ = 0.01; (b) ∆τ = 0.005; (c) ∆τ = 0.0025.

with maximum energy error reasonably controlled for most trajectories in both the
smooth or chaotic intervals (figure 21). Focusing on the subinterval [1.8, 2.0], we
observed that reduction of the step size did lead to apparent convergence of Tc in
the smooth subintervals (figure 20), but not in the chaotic regime where the extreme
sensitivity of the calculation renders the individual orbits essentially uncomputable
in the deterministic sense (figure 19), despite the fact that the trajectory energy
errors are converging to zero (figure 22).

This example illustrates one of the most important reasons for using structure-
preserving integrators. In the smooth regime, almost any integrator can achieve rea-
sonable results on a fixed time-interval with a sufficiently small time-step. This can
be viewed as a direct consequence of the convergence of the method. On the other
hand, in the chaotic regime, nothing can be said regarding the global error of a tra-
jectory, and we are forced to rely on other properties of the integrator in question
(such as preservation of physical properties of the dynamical system) to argue for
the validity of our computation.
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8. Conclusion

A reversible adaptive regularizing scheme for perturbed Kepler problems and certain
types of classical N -body problems has been presented. This method uses a special
Sundman transformation, the adaptive Verlet method, KS regularization, and a fast
Kepler solver. The resulting algorithm performs well in the examples looked at. What
has not been shown is how to use these methods in problems with three-body close
approaches; this remains an open challenge.
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